1) GIVEN: A 4.8 ft long steel wire with $\varnothing 0.25 \mathrm{in}$ is subjected to a $750-\mathrm{lb}$ tensile load. ($\mathrm{E}_{\mathrm{s}}=29 \mathrm{x} 10^{6} \mathrm{psi}$) REQ'D: (a) Elongation of the wire.
(b) Corresponding normal stress. (B9.1)
2) GIVEN: $\varnothing 4 \mathrm{~mm}$ steel guy wire $B C$ as shown. $\mathrm{E}_{\mathrm{s}}=200 \mathrm{GPa}$

REQ'D: Maximum load, P , if max stress and elongation in the wire must not exceed 190 MPa and 6 mm . (B9.11)

3) GIVEN: A steel rod with $\varnothing 7 / 8$ in is tensile tested as shown.
($v=0.3$ and $\mathrm{E}=29 \times 10^{6}$ psi for steel)
REQ'D: (a) Elongation in the 8in. gage length.
(b) Change in diameter of the rod. (B9.49)

4) GIVEN: Two solid cylindrical rods are joined at B and loaded as shown. Rod AB is steel $\left(\mathrm{E}=29 \times 10^{6} \mathrm{psi}\right)$. Rod BC is brass $\left(15 \times 10^{6} \mathrm{psi}\right)$.
REQ'D: (a) Total deformation of the composite $\operatorname{rod} A B C$.
(b) Deflection of point B. (B9.16)

