1) GIVEN: A 4.8 ft long steel wire with $\varnothing 0.25 \mathrm{in}$ is subjected to a $750-\mathrm{lb}$ tensile load. $\left(\mathrm{E}_{\mathrm{s}}=29 \mathrm{x} 10^{6} \mathrm{psi}\right)$ REQ'D: (a) Elongation of the wire.
(b) Corresponding normal stress. (B9.1)
2) GIVEN: For electrical insulation a $\varnothing .25$ steel hanger is supported by a rigid circular plate (shown cutaway) resting on a $1 / 8 \mathrm{in}$ wall thickness polystyrene tube. ($\mathrm{E}_{\text {poly }}=.45 \times 10^{6} \mathrm{psi}$)
REQ'D: (a) Elongation of $\operatorname{rod} A B$
(b) Deflection of point B
(c) Normal stress in $\operatorname{rod} A B$. (B9.17)

3) GIVEN: The concrete column is reinforced with six $\varnothing 1-1 / 8 \mathrm{in}$. steel rods.

$$
\mathrm{E}_{\mathrm{s}}=29 \times 10^{6} \mathrm{psi} \text { and } \mathrm{E}_{\mathrm{c}}=4.2 \times 10^{6} \mathrm{psi}
$$

REQ'D: Normal stresses in the steel and concrete if $\mathrm{P}=350 \mathrm{kips}$. (B9.27)

4) GIVEN: $\varnothing 60 \mathrm{~mm}$ bolts used to secure the top on a nuclear reactor vessel. REQ'D: Tension in bolts when $\Delta \varnothing$ is $13 \mu \mathrm{~m} . \mathrm{E}=200 \mathrm{GPa}$ and $v=0.29$ (B9.52)

